Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.864
Filtrar
1.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667797

RESUMO

The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.


Assuntos
Antifúngicos , Organismos Aquáticos , Antifúngicos/farmacologia , Humanos , Animais , Fungos/efeitos dos fármacos , Fungos/metabolismo , Metabolismo Secundário , Produtos Biológicos/farmacologia
2.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38575516

RESUMO

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Assuntos
Aminoglicosídeos , Isópteros , Óxido Nítrico , Triterpenos , Animais , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Estrutura Molecular , Isópteros/microbiologia , Aminoglicosídeos/farmacologia , Austrália , Ativação Transcricional/efeitos dos fármacos , Fungos/metabolismo , Talaromyces/química , Talaromyces/metabolismo , Actinomyces/metabolismo , Actinomyces/efeitos dos fármacos
3.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580768

RESUMO

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Assuntos
Anti-Infecciosos , Bacillus , Antifúngicos/química , Bacillus/metabolismo , Fungos/metabolismo , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Extratos Vegetais/metabolismo , Endófitos
4.
World J Microbiol Biotechnol ; 40(6): 178, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662173

RESUMO

Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.


Assuntos
Bactérias , Biotecnologia , Fungos , Ácido Oxálico , Ácido Oxálico/metabolismo , Fungos/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Plantas/microbiologia , Plantas/metabolismo , Oxalatos/metabolismo , Lignina/metabolismo
5.
J Hazard Mater ; 470: 134231, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598881

RESUMO

Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.


Assuntos
Bactérias , Fungos , Fungicidas Industriais , Microbiologia do Solo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Poluentes do Solo/toxicidade , Microbiota/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos
6.
Sci Rep ; 14(1): 9318, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654024

RESUMO

Endophytes of Panax have the potential to produce their host plant secondary metabolites, ginsenosides. Panax sokpayensis, an endemic traditional medicinal plant of the Sikkim Himalayas was explored for the isolation of endophytic fungi. In the present study, we have isolated 35 endophytic fungal cultures from the rhizome of P. sokpayensis and screened for ginsenosides production by HPLC by comparing the peak retention time with that of standard ginsenosides. The HPLC analysis revealed that out of 35 isolates, the mycelial extracts of four fungal endophytes (PSRF52, PSRF53, PSRF49 and PSRF58) exhibited peaks with a similar retention time of the standard ginsenoside, Compound K (CK). LC-ESI-MS/MS analysis led to the confirmation of ginsenoside CK production by the four fungal endophytes which showed a compound with m/z 639.6278, similar to that of standard ginsenoside CK with yield in potato dextrose broth flask fermentation ranging from 0.0019 to 0.0386 mg/g of mycelial mass in dry weight basis. The four prospective fungal endophyte isolates were identified as Thermothielavioides terrestris PSRF52, Aspergillus sp. PSRF49, Rutstroemiaceae sp. strain PSRF53, and Phaeosphaeriaceae sp. strain PSRF58 based on ITS sequencing. The present finding highlights the need for further study on growth optimization and other culture parameters to exploit the endophytes as an alternative source for ginsenoside CK production.


Assuntos
Endófitos , Fermentação , Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Panax/microbiologia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Fungos/metabolismo , Fungos/isolamento & purificação , Rizoma/microbiologia
7.
Food Microbiol ; 120: 104486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431331

RESUMO

Auricularia auricula fermentation was performed to reduce anti-nutritional factors, improve nutritional components, and enhance biological activity of soybean. Results showed that the contents of raffinose, stachyose, and trypsin inhibitor were significantly decreased from initial 1.65 g L-1, 1.60 g L-1, and 284.67 µg g-1 to 0.14 g L-1, 0.35 g L-1, and 4.52 µg g-1 after 144 h of fermentation, respectively. Simultaneously, the contents of polysaccharide, total phenolics, and total flavonoids were increased, and melanin was secreted. The isoflavone glycosides were converted to their aglycones, and the contents of glyctin and genistin were decreased from initial 1107.99 µg g-1 and 2852.26 µg g-1 to non-detection after 72 h of fermentation, respectively. After 96 h of fermentation, the IC50 values of samples against DPPH and ABTS radicals scavenging were decreased from 17.61 mg mL-1 and 3.43 mg mL-1 to 4.63 mg mL-1 and 0.89 mg mL-1, and those of samples inhibiting α-glucosidase and angiotensin I-converting enzyme were decreased from 53.89 mg mL-1 and 11.27 mg mL-1 to 18.24 mg mL-1 and 6.78 mg mL-1, respectively, indicating the significant increase in these bioactivities. These results suggested A. auricula fermentation can enhance the nutritional quality and biological activity of soybean, and the fermented soybean products have the potential to be processed into health foods/food additives.


Assuntos
Antioxidantes , Auricularia , Soja , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fermentação , Fungos/metabolismo
8.
Sci Rep ; 14(1): 5934, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467843

RESUMO

The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Humanos , Prata/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Fungos/metabolismo , Linhagem Celular , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
9.
Int J Biol Macromol ; 265(Pt 2): 130997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508568

RESUMO

Cancer remains a global health challenge, demanding novel therapeutic options due to the debilitating side effects of conventional treatments on healthy tissues. The review highlights the potential of L-methioninase, a pyridoxal-5-phosphate (PLP)-dependent enzyme, as a promising avenue in alternative cancer therapy. L-methioninase offers a unique advantage, its ability to selectively target and inhibit the growth of cancer cells without harming healthy cells. This selectivity arises because tumor cells lack an essential enzyme called methionine synthase, which healthy cells use to make the vital amino acid L-methionine. Several sources harbor L-methioninase, including bacteria, fungi, plants, and protozoa. Future research efforts can explore and exploit this diverse range of sources to improve the therapeutic potential of L-methioninase in the fight against cancer. Despite challenges, research actively explores microbial L-methioninase for its anticancer potential. This review examines the enzyme's side effects, advancements in combination therapies, recombinant technologies, polymer conjugation and novel delivery methods like nanoparticles, while highlighting the success of oral administration in preclinical trials. Beyond its promising role in cancer therapy, L-methioninase holds potential applications in food science, antioxidants, and various health concerns like diabetes, cardiovascular issues, and neurodegenerative diseases. This review provides a piece of current knowledge and future prospects of L-methioninase, exploring its diverse therapeutic potential.


Assuntos
Liases de Carbono-Enxofre , Neoplasias , Humanos , Liases de Carbono-Enxofre/metabolismo , Neoplasias/tratamento farmacológico , Terapia Combinada , Fungos/metabolismo , Metionina/metabolismo , Proteínas Recombinantes/uso terapêutico
10.
Arch Microbiol ; 206(4): 185, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506928

RESUMO

This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.


Assuntos
Fungos , Redes e Vias Metabólicas , Espectrometria de Massas , Fungos/genética , Fungos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas
11.
Int J Biol Macromol ; 264(Pt 1): 130639, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453122

RESUMO

The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and ß-glucosidase. The enzyme attacks the polymeric structure's ß-1,4-linkages during the cellulose breakdown reaction. This mechanism is crucial for the environment as it recycles cellulose in the biosphere. However, there are problems with enzymatic cellulose breakdown, including complex cellulase structure, insufficient degradation efficacy, high production costs, and post-translational alterations, many of which are closely related to certain unidentified cellulase properties. These issues impede the practical use of cellulases. A developing area of research is the application of this similar paradigm for industrial objectives. Cellulase enzyme exhibits greater promise in many critical industries, including biofuel manufacture, textile smoothing and finishing, paper and pulp manufacturing, and farming. However, the study on cellulolytic enzymes must move forward in various directions, including increasing the activity of cellulase as well as designing peptides to give biocatalysts their desired attributes. This manuscript includes an overview of current research on different sources of cellulases, their production, and biochemical characterization.


Assuntos
Celulase , Celulases , Celulases/química , Celulase/metabolismo , Celulose/química , Fungos/metabolismo , Bactérias/metabolismo
12.
Appl Microbiol Biotechnol ; 108(1): 277, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536496

RESUMO

Fungal infections represent a significant health risk worldwide. Opportunistic infections caused by yeasts, particularly by Candida spp. and their virulent emerging isolates, have become a major threat to humans, with an increase in fatal cases of infections attributed to the lack of effective anti-yeast therapies and the emergence of fungal resistance to the currently applied drugs. In this regard, the need for novel anti-fungal agents with modes of action different from those currently available is undeniable. Anti-microbial peptides (AMPs) are promising candidates for the development of novel anti-fungal biomolecules to be applied in clinic. A class of AMPs that is of particular interest is the small cysteine-rich proteins (CRPs). Among CRPs, plant defensins and anti-fungal proteins (AFPs) of fungal origin constitute two of the largest and most promising groups of CRPs showing anti-fungal properties, including activity against multi-resistant pathogenic yeasts. In this review, we update and compare the sequence, structure, and properties of plant defensins and AFPs with anti-yeast activity, along with their in vitro and in vivo potency. We focus on the current knowledge about their mechanism of action that may lead the way to new anti-fungals, as well as on the developments for their effective biotechnological production. KEY POINTS: • Plant defensins and fungal AFPs are alternative anti-yeast agents • Their multi-faceted mode of action makes occurrence of resistance rather improbable • Safe and cost-effective biofactories remain crucial for clinical application.


Assuntos
Defensinas , Proteínas Fúngicas , Humanos , Proteínas Fúngicas/genética , Defensinas/farmacologia , Plantas/microbiologia , Antifúngicos/química , Fungos/metabolismo , Proteínas de Plantas/metabolismo , Testes de Sensibilidade Microbiana
13.
Microb Cell Fact ; 23(1): 93, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539193

RESUMO

Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.


Assuntos
Fusarium , Fusarium/genética , Fusarium/metabolismo , Fungos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Biologia Computacional , Família Multigênica , Vias Biossintéticas/genética
14.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540756

RESUMO

Sodin 5 is a type 1 ribosome-inactivating protein isolated from the seeds of Salsola soda L., an edible halophytic plant that is widespread in southern Europe, close to the coast. This plant, known as 'agretti', is under consideration as a new potential crop on saline soils. Considering a possible defence role of sodin 5 in the plant, we report here its antifungal activity against different halophilic and halotolerant fungi. Our results show that sodin 5 at a concentration of 40 µg/mL (1.4 µM) was able to inhibit the growth of the fungi Trimmatostromma salinum (35.3%), Candida parapsilosis (24.4%), Rhodotorula mucilaginosa (18.2%), Aspergillus flavus (12.2%), and Aureobasidium melanogenum (9.1%). The inhibition observed after 72 h was concentration-dependent. On the other hand, very slight growth inhibition was observed in the fungus Hortaea werneckii (4.2%), which commonly inhabits salterns. In addition, sodin 5 showed a cytotoxic effect on the Sf9 insect cell line, decreasing the survival of these cells to 63% at 1.0 µg/mL (34.5 nM). Structural analysis of sodin 5 revealed that its N-terminal amino acid residue is blocked. Using mass spectrometry, sodin 5 was identified as a homologous to type 1 polynucleotide:adenosine glycosylases, commonly known as ribosome-inactivating proteins from the Amaranthaceae family. Twenty-three percent of its primary structure was determined, including the catalytic site.


Assuntos
Salsola , Saporinas/metabolismo , Salsola/metabolismo , Fungos/metabolismo , Antifúngicos/metabolismo , Sementes/química , Proteínas de Plantas/química
15.
Environ Sci Technol ; 58(13): 5866-5877, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38504110

RESUMO

Soil microbes, the main driving force of terrestrial biogeochemical cycles, facilitate soil organic matter turnover. However, the influence of the soil fauna on microbial communities remains poorly understood. We investigated soil microbiota dynamics by introducing competition and predation among fauna into two soil ecosystems with different fertilization histories. The interactions significantly affected rare microbial communities including bacteria and fungi. Predation enhanced the abundance of C/N cycle-related genes. Rare microbial communities are important drivers of soil functional gene enrichment. Key rare microbial taxa, including SM1A02, Gammaproteobacteria, and HSB_OF53-F07, were identified. Metabolomics analysis suggested that increased functional gene abundance may be due to specific microbial metabolic activity mediated by soil fauna interactions. Predation had a stronger effect on rare microbes, functional genes, and microbial metabolism compared to competition. Long-term organic fertilizer application increased the soil resistance to animal interactions. These findings provide a comprehensive understanding of microbial community dynamics under soil biological interactions, emphasizing the roles of competition and predation among soil fauna in terrestrial ecosystems.


Assuntos
Microbiota , Solo , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Fungos/metabolismo
16.
Steroids ; 205: 109392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452910

RESUMO

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Assuntos
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
17.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38549434

RESUMO

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Assuntos
Bactérias , Biodegradação Ambiental , Cafeína , Fungos , Cafeína/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Fungos/metabolismo , Fungos/genética , Leveduras/metabolismo , Leveduras/genética
18.
Microbiol Res ; 283: 127671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479232

RESUMO

Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.


Assuntos
Antifúngicos , Fungos , Humanos , Antifúngicos/metabolismo , Fungos/genética , Fungos/metabolismo , Virulência/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Fúngicas/metabolismo
19.
Sci Prog ; 107(1): 368504241239447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511725

RESUMO

Since the environmentally friendly reuse of corn stalks attracts more and more attention, it is an efficient and feasible way to reuse corn stalks as forage. However, whether the cellulose, lignin, and hemicellulose within corn stalks can be effectively decomposed becomes a key to reusing corn stalks as forage. Orthogonal test was designed by five different degradation temperatures (22°C, 24°C, 26°C, 28°C, 30°C), five different pH values (4, 5, 6, 8, 10), and five different degradation time durations (5, 15, 25, 30, and 35 days) to examine 25 kinds of different degradation conditions. It was found that the decomposition effect of hemicellulose, cellulose, and lignin, of group 25 (26°C, pH = 5, 25 days) was stronger compared with other groups, with the contents calculated as 8.22%, 31.55%, and 22.55% individually (p < 0.01, p < 0.05). Group 19 (22°C, pH = 4, 5 days) revealed the worst degradation effect of cellulose, lignin, and hemicellulose compared to other groups, with contents calculated as 15.48%, 38.85%, and 29.57%, individually (p < 0.01, p < 0.05). The research data deliver a basis for ideal degradation conditions for corn stalks degradation in combination with the digestive enzymes of P. chrysosporium and O. furnacalis larva. Aiming to explore a highly efficient and environmentally friendly corn stalk degradation method.


Assuntos
Lignina , Zea mays , Lignina/química , Lignina/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Fungos/metabolismo
20.
Food Res Int ; 182: 114146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519176

RESUMO

This study evaluated the nutritional quality of different microbial biomass samples by assessing their protein digestibility and carbohydrate fermentability in the colon using in vitro methods. Four microbial samples were produced: one hydrogen-oxidizing bacterial strain (Nocardioides nitrophenolicus KGS-27), two strains of filamentous fungi (Rhizopus oligosporus and Paecilomyces variotii), and one yeast strain (Rhodotorula babjevae). The microorganisms were grown in bioreactors, harvested and dried before analysis. The commercial fungal product Quorn was used as a reference. The protein digestibility of the microbial samples was analysed using the INFOGEST in vitro model, followed by quantification of N-terminal amine groups. An in vitro faecal fermentation experiment was also performed to evaluate the degradation of carbohydrates in microbial biomass samples and formation of short-chain fatty acids (SCFA). The fungal biomass samples had higher protein hydrolysis (60-75 %) than the bacterial sample (12 %) and Quorn (45 %), while the yeast biomass had the highest protein digestibility (85 %). Heat-treatment of the biomass significantly reduced its protein digestibility. Total dietary fibre (DF) content of fungal biomass was 31 - 43 %(DW), mostly insoluble, whereas the bacterial biomass contained mainly soluble DF (total DF: 25.7 %, of which 23.5 % were soluble and 2.2 % insoluble). After 24 h of colonic in vitro fermentation, SCFA production from the biomass of Paecilomyces, Quorn and Rhodotorula was similar to that of wheat bran, while 17 % and 32 % less SCFA were produced from the biomass of Rhizopus and the bacterial strain, respectively. Further studies are needed to clarify the reasons for the observed differences in protein digestibility and DF fermentability, especially regarding the cell wall structures and role of post-processing.


Assuntos
Fibras na Dieta , Ácidos Graxos Voláteis , Fermentação , Proteólise , Biomassa , Fibras na Dieta/análise , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Colo/metabolismo , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA